Logic for performing LU Decomposition https://en.wikipedia.org/wiki/LU_decomposition.
More...
#include <LUDecomposition.hpp>
|
t_type | det () const |
|
Matrix< t_type, t_m, t_n > | getL () const |
|
template<class t_pivot_type = sint04> |
Vector< t_m, t_pivot_type > | getPivot () const |
|
Matrix< t_type, t_m, t_n > | getU () const |
|
bool | isNonsingular () const |
|
| LUDecomposition (const Matrix< t_type, t_m, t_n > &A) |
|
template<uint01 t_nx> |
Matrix< t_type, t_m, t_nx > | solve (const Matrix< t_type, t_m, t_nx > &B) |
|
template<class t_type,
uint01 t_m,
uint01 t_n>
class NDEVR::LUDecomposition< t_type, t_m, t_n >
Logic for performing LU Decomposition https://en.wikipedia.org/wiki/LU_decomposition.
◆ LUDecomposition()
◆ det()
Determinant
- Returns
- det(A)
- Exceptions
-
IllegalArgumentException | Matrix must be square |
◆ getL()
Matrix< t_type, t_m, t_n > getL |
( |
| ) |
const |
|
inline |
Return lower triangular factor
- Returns
- L
◆ getPivot()
template<class t_pivot_type = sint04>
Vector< t_m, t_pivot_type > getPivot |
( |
| ) |
const |
|
inline |
Return pivot permutation vector
- Returns
- piv
◆ getU()
Matrix< t_type, t_m, t_n > getU |
( |
| ) |
const |
|
inline |
Return upper triangular factor
- Returns
- U
◆ isNonsingular()
bool isNonsingular |
( |
| ) |
const |
|
inline |
Is the matrix nonsingular?
- Returns
- true if U, and hence A, is nonsingular.
◆ solve()
Matrix< t_type, t_m, t_nx > solve |
( |
const Matrix< t_type, t_m, t_nx > & | B | ) |
|
|
inline |
Solve A*X = B
- Parameters
-
B | A Matrix with as many rows as A and any number of columns. |
- Returns
- X so that L*U*X = B(piv,:)
- Exceptions
-
IllegalArgumentException | Matrix row dimensions must agree. |
RuntimeException | Matrix is singular. |
The documentation for this class was generated from the following file: